Received 9 November 2005 Accepted 21 November 2005

Online 30 November 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Zhen Wang, Zun-Le Xu,* Dong-Sheng Deng and Zhao-Xun Lian

School of Chemistry and Chemical Engineering, University of Sun Yat-Sen, Guangzhou 510275, People's Republic of China

Correspondence e-mail: wxzqq1234@163.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.002 Å R factor = 0.037 wR factor = 0.108 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(2-Hydroxyethyl)-13c-methoxy-1-oxo-1,13cdihydrodibenzo[*a,kl*]xanthene-2-carboxamide

The title compound, $C_{24}H_{19}NO_5$, contains five fused rings, of which three are planar and the other two have twisted and flattened boat forms. The crystal structure is stabilized by intra- and intermolecular $N-H\cdots O$, $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds.

Comment

1,1'-Binaphthol and its derivatives are used in a broad field of research. Optically pure binaphthol compounds have been used for various applications (Nishizawa *et al.*, 1981; Noyori *et al.*, 1979; Naruse *et al.*, 1988; Hesemann & Moreau, 2003). It has been reported (Tan *et al.*, 2001) previously that a copperamine complex led to a domino reaction from binaphthol to yield xanthene.

The title compound, (II), was obtained from 1,1'-3-(N-2-hydroxyethyl)methaminobinaphthol, (I), oxidized by O₂, under the catalysis of the CuCl₂ complex of ethanolamine (1:1) in methanol. The oxidation reaction takes place at a low temperature. Three conversions occurred from (I) to (II): 2'-O-C₈ coupling, -OH oxidation and C₁-OCH₃ coupling.

Fig. 1 shows the molecular structure of (II), with the atomic numbering scheme. It contains five fused rings, A (C5–C10), B (C1–C4/C9/C10), C (C1/C2/O3/ C11–C13), D (C12–C17) and E (C11/C12/C17–C20), with the carbonyl and methoxy groups attached to atom C19 and the chiral atom C11, respectively. Rings A, B and D are planar. Rings C and E have total puckering amplitudes of 1.844 (3) and 0.480 (3) Å (Cremer & Pople, 1975) and twisted and flattened boat forms [$\varphi = 150.1$ (4)°, $\theta = 89.4$ (5)° and $\varphi = 161.3$ (4), $\theta = 118.2$ (5)°, respectively].

The crystal structure is stabilized by intramolecular $N-H\cdots O$ and $C-H\cdots O$, and intermolecular $N-H\cdots O$, $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 1, and Figs. 1 and 2).

Experimental

Under the catalysis of CuCl₂–ethanolamine (1:1) in methanol, (I) was oxidized by O_2 to give (II), which was purified through a short column of Al_2O_3 (eluted with petroleum ether-EtOAc). It was crystallized

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

organic papers

from acetone (yield 40%, m.p. 431–433 K). IR (KBr, cm⁻¹): ν 3381 (OH), 3334 (OH), 3062 (Ar), 2931, 2886, 2816, 1708 (C=O), 1635, 1456, 1052, 750; ¹H NMR (CD₃OD, p.p.m.): δ 8.06 (1H, *s*), 8.04–8.03 (1H, *m*), 7.98 (1H, *d*, *J* = 8.0 Hz), 7.86–7.85 (1H, *m*), 7.53 (1H, *t*, *J* = 7.0 and 8.5 Hz), 7.43–7.41 (2H, *m*), 7.39–7.37 (2H, *m*), 7.27 (1H, *dd*, *J* = 8.5 and 1.0 Hz), 3.69 (2H, *td*, *J* = 7.5, 6.5 and 2.0 Hz), 3.54–3.48 (2H, *m*), 2.78 (3H, *s*); FAB-MS, *m**/*z** (%): 401 ([*M*]⁺, 3), 370 ([*M*-OCH₃]⁺, 23). Analysis calculated for C₂₄H₁₉NO₅: C 71.81, H 4.77, N 3.49%; found: C 71.50, H 4.79, N 3.31%.

Mo $K\alpha$ radiation Cell parameters from **25**

 $0.55 \times 0.54 \times 0.53$ mm

4170 independent reflections 3137 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0506P)^{2} + 0.3748P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

correct?] $\theta = 12-18^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 273 (2) KBlock, yellow

 $\begin{aligned} R_{\text{int}} &= 0.020\\ \theta_{\text{max}} &= 27.0^{\circ}\\ h &= -8 \rightarrow 9\\ k &= -16 \rightarrow 21\\ l &= -18 \rightarrow 19 \end{aligned}$

reflections [quite low - is this

Crystal data

C ₂₄ H ₁₉ NO ₅
$M_r = 401.40$
Monoclinic, $P2_1/c$
a = 7.275 (2) Å
b = 17.270 (6) Å
c = 15.342 (5) Å
$\beta = 91.475 \ (6)^{\circ}$
$V = 1926.9 (11) \text{ Å}^3$
Z = 4
$D_x = 1.384 \text{ Mg m}^{-3}$

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.948, T_{\max} = 0.950$
11405 measured reflections

Refinement

- - - -

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.037$
$wR(F^2) = 0.108$
S = 1.02
4170 reflections
271 parameters
H-atom parameters constrained

Table I			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1−H1A····O4	0.86	2.17	2.8317 (17)	133
$N1-H1A\cdotsO1^{i}$	0.86	2.34	3.0197 (19)	136
$O1 - H1B \cdot \cdot \cdot O2^{ii}$	0.82	1.99	2.8022 (18)	174
$C8-H8A\cdots O4$	0.93	2.55	2.9246 (19)	104
$C8-H8A\cdots O5$	0.93	2.54	3.0804 (20)	118
$C15-H15A\cdots O2^{iii}$	0.93	2.46	3.3468 (18)	159
Symmetry codes: (i) $-x$	+1, -y + 1, -	-z; (ii) $-x, -y$	y + 1, -z; (iii) $-x, y$	$+\frac{1}{2}, -z - \frac{1}{2}.$

The H atoms were located in a difference map and constrained to ride on their parent atoms at distances of 0.82 (OH), 0.86 (NH), 0.93 (CH), 0.97 (CH₂) and 0.96 Å (CH₃), with U_{iso} (H) values of 1.2 (1.5 for

methyl and hydroxy) times $U_{eq}(C,N,O)$. Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Figure 1

The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Packing diagram of (II); hydrogen bonds are shown as dashed lines.

References

Bruker (1997). SMART (Version 5.6), SAINT (Version 5.06A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Hesemann, P. & Moreau, J. J. E. (2003). C. R. Chim. 6, 199-207.

- Naruse, Y., Esaki, T. & Yamamoto, H. (1988). Tetrahedron Lett. 29, 1417–1420.
- Nishizawa, M., Yamada, M. & Noyori, R. (1981). *Tetrhedron Lett.* 22, 247–250.Noyori, R., Tomino, I. & Nishizawa, M. (1979). J. Am. Chem. Soc. 101, 5843–5844.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tan, D.-M., Li, H. -H., Wang, B., Liu, H.-B. & Xu, Z.-L. (2001). Chin. J. Chem. 19, 91–93.