Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiu-Zhen Wang, Zun-Le Xu,* Dong-Sheng Deng and Zhao-Xun Lian

School of Chemistry and Chemical Engineering, University of Sun Yat-Sen, Guangzhou 510275, People's Republic of China

Correspondence e-mail: wxzqq1234@163.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.108$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(2-Hydroxyethyl)-13c-methoxy-1-oxo-1,13c-dihydrodibenzo[a,kl]xanthene-2-carboxamide

The title compound, $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{5}$, contains five fused rings, of which three are planar and the other two have twisted and flattened boat forms. The crystal structure is stabilized by intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

1,1'-Binaphthol and its derivatives are used in a broad field of research. Optically pure binaphthol compounds have been used for various applications (Nishizawa et al., 1981; Noyori et al., 1979; Naruse et al., 1988; Hesemann \& Moreau, 2003). It has been reported (Tan et al., 2001) previously that a copperamine complex led to a domino reaction from binaphthol to yield xanthene.

The title compound, (II), was obtained from 1,1'-3-(N-2hydroxyethyl)methaminobinaphthol, (I), oxidized by O_{2}, under the catalysis of the CuCl_{2} complex of ethanolamine (1:1) in methanol. The oxidation reaction takes place at a low temperature. Three conversions occurred from (I) to (II): 2^{\prime} -$\mathrm{O}-\mathrm{C}_{8}$ coupling, -OH oxidation and $\mathrm{C}_{1}-\mathrm{OCH}_{3}$ coupling.

Fig. 1 shows the molecular structure of (II), with the atomic numbering scheme. It contains five fused rings, A (C5-C10), B (C1-C4/C9/C10), C (C1/C2/O3/ C11-C13), D (C12-C17) and $E(\mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 17-\mathrm{C} 20)$, with the carbonyl and methoxy groups attached to atom C19 and the chiral atom C11, respectively. Rings A, B and D are planar. Rings C and E have total puckering amplitudes of 1.844 (3) and 0.480 (3) A (Cremer \& Pople, 1975) and twisted and flattened boat forms $[\varphi=$ $150.1(4)^{\circ}, \theta=89.4(5)^{\circ}$ and $\varphi=161.3$ (4), $\theta=118.2(5)^{\circ}$, respectively].
The crystal structure is stabilized by intramolecular N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$, and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1, and Figs. 1 and 2).

Experimental

Under the catalysis of CuCl_{2}-ethanolamine (1:1) in methanol, (I) was oxidized by O_{2} to give (II), which was purified through a short column of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (eluted with petroleum ether-EtOAc). It was crystallized

Received 9 November 2005 Accepted 21 November 2005 Online 30 November 2005
from acetone (yield 40%, m.p. 431-433 K). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 3381 (OH), 3334 (OH), 3062 (Ar), 2931, 2886, 2816, $1708(\mathrm{C}=\mathrm{O}), 1635$, 1456, 1052, 750 ; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, p.p.m.): $\delta 8.06(1 \mathrm{H}, s), 8.04-8.03$ $(1 \mathrm{H}, m), 7.98(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 7.86-7.85(1 \mathrm{H}, m), 7.53(1 \mathrm{H}, t, J=7.0$ and 8.5 Hz$), 7.43-7.41(2 \mathrm{H}, m), 7.39-7.37(2 \mathrm{H}, m), 7.27(1 \mathrm{H}, d d, J=$ 8.5 and 1.0 Hz$), 3.69(2 \mathrm{H}, t d, J=7.5,6.5$ and 2.0 Hz$), 3.54-3.48(2 \mathrm{H}$, $m), 2.78(3 \mathrm{H}, s) ; \mathrm{FAB}-\mathrm{MS}, m^{*} / z^{*}(\%): 401\left([M]^{+}, 3\right), 370\left(\left[M-\mathrm{OCH}_{3}\right]^{+}\right.$, 23). Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{5}$: C 71.81, H 4.77, N 3.49%; found: C $71.50, \mathrm{H} 4.79$, N 3.31%.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{5}$
$M_{r}=401.40$
Monoclinic, $P 2_{1} / c$
$a=7.275$ (2) \AA
$b=17.270$ (6) \AA
$c=15.342$ (5) \AA
$\beta=91.475(6)^{\circ}$
$V=1926.9$ (11) \AA^{3}
$Z=4$
$D_{x}=1.384 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.948, T_{\text {max }}=0.950$
11405 measured reflections

Mo $K \alpha$ radiation
Cell parameters from $\mathbf{2 5}$ reflections [quite low - is this correct?]
$\theta=12-18^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, yellow
$0.55 \times 0.54 \times 0.53 \mathrm{~mm}$

4170 independent reflections
3137 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-8 \rightarrow 9$
$k=-16 \rightarrow 21$
$l=-18 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.108$
$S=1.02$
4170 reflections
271 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4$	0.86	2.17	2.8317 (17)	133
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\text {i }}$	0.86	2.34	3.0197 (19)	136
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\text {ii }}$	0.82	1.99	2.8022 (18)	174
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 4$	0.93	2.55	2.9246 (19)	104
C8-H8A \cdots O5	0.93	2.54	3.0804 (20)	118
C15-H15A \cdots O2 $2^{\text {iii }}$	0.93	2.46	3.3468 (18)	159

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x,-y+1,-z$; (iii) $-x, y+\frac{1}{2},-z-\frac{1}{2}$.

The H atoms were located in a difference map and constrained to ride on their parent atoms at distances of $0.82(\mathrm{OH}), 0.86(\mathrm{NH}), 0.93$ $(\mathrm{CH}), 0.97\left(\mathrm{CH}_{2}\right)$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2(1.5$ for methyl and hydroxy) times $U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing diagram of (II); hydrogen bonds are shown as dashed lines.

References

Bruker (1997). SMART (Version 5.6), SAINT (Version 5.06A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Hesemann, P. \& Moreau, J. J. E. (2003). C. R. Chim. 6, 199-207.
Naruse, Y., Esaki, T. \& Yamamoto, H. (1988). Tetrahedron Lett. 29, 1417-1420.
Nishizawa, M., Yamada, M. \& Noyori, R. (1981). Tetrhedron Lett. 22, 247-250.
Noyori, R., Tomino, I. \& Nishizawa, M. (1979). J. Am. Chem. Soc. 101, $5843-$ 5844.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tan, D.-M., Li, H. -H., Wang, B., Liu, H.-B. \& Xu, Z.-L. (2001). Chin. J. Chem. 19, 91-93.

